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3 1. Vector Spaces

1 Vector Spaces

1A Rn and Cn

In this textbook, R and C are generalized to F as they are both fields, which is any set that contains

at least 0 and 1 with operations of addition and multiplication satisfying the following properties:

• commutativity: α+ β = β + α ∀α, β ∈ F

• associativity: (α+ β) + λ = α+ (β + λ) and (αβ)λ = α(βλ) ∀α, β, λ ∈ F

• identities: λ+ 0 = λ and 1λ = λ ∀λ ∈ F

• additive inverse: ∀α ∈ F ∃! β ∈ F : α+ β = 0

• multiplicative inverse: ∀α ∈ F ∃! β ∈ F : αβ = 1

• distributive property: λ(α+ β) = λα+ λβ ∀λ, α, β ∈ F

Extending our concept of fields to higher dimension, we define Fn as:

Fn = {(x1, ..., xn) : xk ∈ F ∀k = 1, ..., n}

1B Definition of Vector Spaces

(1.20) A vector space is any set V that is closed under addition and scalar multiplications. Addi-

tionally, it must also satisfy the following properties:

• commutativity: u+ v = v + u ∀u, v ∈ V

• associativity: (u+ v) + w = u+ (v + w) and (ab)u = a(bu) ∀u, v, w ∈ V and ∀a, b ∈ F

• identities: v + 0 = v and 1v = v ∀λ ∈ V

• additive inverse: ∀v ∈ V ∃ w ∈ V : v + w = 0

• distributive property: a(u+ u) = au+ av ∀u, v ∈ V and ∀a ∈ F

Note the following:

• (1.27) We no longer demand the inverse to be unique as its uniqueness follows from associa-

tivity

• There is no multiplicative inverse defined for vector fields (obvious)

Other defintions:

• Denote FS as the set of functions f : S → F

• A vector space V is defined over a field (e.g. F) as a place to draw its scalars

Other theorems:

• (1.26) A vector space has a unique additive identity which follows from commutativity

• (1.30) 0v = 0 ∀v ∈ V which follows from the existence of additive inverses. Note that these

two conditions are equivalent (replaceable) in the definition of a vector space (1B-5).

• (1.31) Similarly, a0 = 0 ∀a ∈ F, which again follows from existence of additive inverses

• (1.32) Lastly, −1v = −v ∀v ∈ V
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1C Subspaces

In this book, V is assumed to be defined over F, unless stated otherwise.

A subspace is the analogue of subset for vector spaces. A subspace U of V is defined as the subset

of V which satisfies:

• additive identity: 0 ∈ U

• closed under addition: u,w ∈ U implies u+ w = U

• closed under multiplication: a ∈ F and u ∈ U implies au ∈ U

This reduced set of conditions is due to the underlying structure of V .

Subspace Sum

The analogue of set unions for vectorspaces are subspace sums, defined as:

m∑
i−1

Vi =

{
m∑
i=1

vi : vi ∈ Vi i ∈ {1, ...,m}

}

or the set of all possible sums of elements of {Vi}m1 .

Note that:

• (1.40)
∑m

i−1 Vi is the smallest subspace of V containing V1, ..., Vm

• (1.45) V1 ⊕ ...⊕ Vm is direct ⇐⇒ the only way to write 0 as a sum v1 + ...+ vm, where each

vk ∈ Vk, is by taking each vk equal to 0

• (1.46) U +W is a direct sum ⇐⇒ U ∩W = {0}. This relies heavily on existence of additive

inverse and is only true for two subspaces

2 Finite-Dimensional Vector Spaces

2A Span and Linear Independence

Span

• (2.2) A linear combination of a list of vectors vk ∈ V is the vector of the form:

u =
∑
k

akvk

where ak ∈ F.

• (2.3) The span of a list of vectors vk ∈ V is defined as:

span ({vk}) =

{∑
k

akvk : ak ∈ F

}

• (2.7) If span({vk}) = V , then {vk} spans V
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• (2.9) A vector space is finite-dimensional if some list of vectors spans the space. By definition,

lists have a finite length

Theorems:

• (2.6) span({vk}), vk ∈ V is the smallest subspace of V containing all vk’s

• Every subspace of a finite-dimensional vector space is finite-dimensional, which follows from

(2.19) and (2.22).

Polynomials

• (2.10) A function p : F → F is a polynomial with coefficients in F if ∃ {ak}m0 ∈ F such that:

p(z) =
m∑
k=0

akz
k ∀z ∈ F

The set P(F) is the set of all polynomials with coefficients in F.

• (2.11) The degree of a polynomial is denoted by deg p. The 0 polynomial has degree deg 0 = −∞.

• (2.12) Pm(F) denotes all polynomials with coefficients in F of degree at most m

Linear independence

(2.15) A list of vectors {vk}m1 ∈ V is linearly independent if the only choice of {ak}m1 ∈ F that

makes:
m∑
k=1

akvk = 0

is a1 = ... = am = 0. The empty list ( ) is also declared to be linearly independent.

(2.17) A list is linearly dependent if it is not linearly independent.

(2.19) Linear dependence lemma

Notes:

• For a list of vectors {vk} ∈ V , whether they are linearly independent depends also on the field

F which V is defined over (2A-7).

2.19 Suppose {vi}m1 ∈ V is linear dependent. Then there exists k ∈ {1, 2, ...,m} such that:

vk ∈ span(v1, ..., vk−1)

Furthermore, if the kth term is removed from {vi}m1 , then the span of the remaining list equals

span({vi}m1 ). This follows from the existence of a non-zero set of {ai} that makes the sum in (2.15)

zero.

(2.22) len(linearly independent list) ≤ len(spanning list)

By far the most versatile theorem in this sub(chapter). This follows from the iterative nature of

(2.19).
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2B Bases

(2.26) A basis of V is a list of vectors in V that is linearly independent and spans V .

• (2.28) A list of vectors {vk} ∈ V is a basis of V iff every v ∈ V can be written uniquely in the

form:

v =
n∑

k=1

akvk

where {ak} ∈ F. Proof sketch:

(⇒) linear independence guarantees uniqueness

(⇐) uniqueness for v = 0 proves linear independence by (2.15)

• (2.30) Every spanning list can be reduced to a basis. Proof by iterative procedure using (2.19).

• (2.31) Every finite-dimensional vector space has a basis, this follows from (2.30)

• (2.32) Every linearly independent list {uk} ∈ V extends to a basis. Proof outline:

1. Append spanning list {wi} ∈ V and use (2.30)

2. None of the u’s gets removed because they are linearly independent (2.19)

• (2.33) For every subspace U of V , ∃W such that V = U ⊕W .

2C Dimension

• (2.34) Any two basis of a finite-dimensional vector space have the same length, which follows

from (2.22).

• (2.35) The dimension of a vector space V , dimV , is defined as the length of its basis

Suppose V is finite-dimensional and U is a subspace of V for the following theorems:

• (2.37) dimU ≤ dimV . This follows from (2.22)

• (2.38) Every linearly independent list of vectors in V of length dimV is a basis of V .

• (2.39) If dimU = dimV , then U = V . This follows from (2.38)

• (2.42) Perhaps less trivially, every spanning list {vk}n1 in V of length dimV is a basis of V.

Proof outline

1. Since {vk}n1 is spanning, it can be reduced to basis (2.30)

2. But every basis must have length n (2.35), thus no elements are deleted.

(2.43) Dimension of a sum

If V1 and V2 are subspaces of a finite-dimensional vector space, then:

dim(V1 + V2) = dimV1 + dimV2 − dim(V1 ∩ V2)

This is, perhaps, the most important theorem in this chapter. Proof for this is quite involved, see

book (Axler, p. 47).

Note that (V1 + V2) ∩ V3 ≠ V1 ∪ V3 + V2 ∪ V3, no matter how tempting it might be to assume so

(2C-19).
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3 Selected Problems

I will present my solution to the following selected problems: 1B-5, 2A-20, 2B-8, 2C-10, 2C-14,

2C-20. Since I will be taking this course next semester (Spring 2025), I have not checked these

solutions with any external source in accordance with the university’s Honor Code. As such, these

solutions might be erroneous.

1B-5 Show that in the definition of a vector space (1.20), the additive inverse condition can be

replaced with the condition that:

0v = 0 ∀v ∈ V (1.30)

Solution To show that this condition is equivalent to the additive inverse condition, we will use

(1.30) along with the other conditions to derive the existence of an additive inverse. The other

direction is not needed as (1.30) is a theorem of the definition (1.20).

For a v ∈ V , we can construct w = −1v ∈ V (closure of scalar multiplication). We have:

v + w = 1v +−1v (multiplicative identity)

= (1− 1)v (distributive)

= 0v (additive inverse for fields)

= 0 (1.30)

∴ ∀v ∈ V ∃w = −1v ∈ V : v + w = 0.

2A-20 Suppose p0, p1, ..., pm are polynomials in Pm(F) such that pk(2) = 0 for each k ∈ {0, ...,m}.
Prove that p0, p1, ..., pm is not linearly independent in Pm(F).

Solution Since every pk(2) = 0 ∀k ∈ {1, ...,m}, we can factorize pk = (x − 2)fk ∀k ∈ {1, ...,m},
where fk is some polynomial of degree deg fk = deg pk−1. Thus, we can be sure that fk ∈ Pm−1(F).

Suppose:

0 =

m∑
k=0

akpk = (x− 2)

m∑
k=0

akfk (Λ)

for some {ak} ∈ F. Since len(f0, ..., fm) = m + 1, but len(1, x, ..., xm−1) = m is a spanning list of

Pm−1(F). Thus {fk}m0 cannot be linearly independent in Pm−1(F) by (2.22).

Since (Λ) must be true ∀x ∈ F, we can divide (x− 2) and get:

m∑
k=0

akfk = 0

As we have shown that {fk}m0 is not linearly independent in Pm−1(F), ∃ {ak}m0 satisfying the above,

where not all ak’s are zero.
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Therefore, we have found a set of coefficients {ak}m0 such that:

m∑
k=0

akpk = 0

Thus, {pk}m0 are not linearly independent by (2.17).

2C-10 Suppose m ∈ Z+. For 0 ≤ k ≤ m, let:

pk(x) = xk(1− x)m−k

Show that p0, ..., pm is a basis of Pm(F).
These are Bernstein polynomials, used to approximate continuous functions on [0, 1]

Solution Since the list has length dimPm(F), showing linear independence is sufficient by (2.38).

Consider 0 ∈ Pm(F), we wish to show:

0 = a0(1− x)m + ...+ akx
k(1− x)m−k + ...+ amxm

only for a0 = ... = am = 0 (2.15). Notice that this expands to:

0 = a0 + (c10a0 + c11a1)x+ ...+

 k∑
j=0

ckjaj

xk + ...+

 m∑
j=0

ckjaj

xm

Since we know that (1, x, ..., xm) is a basis of Pm(F), we must have:

k∑
j=0

ckjaj = 0 ∀k ∈ {0, ...,m}

At k = 0, the sum evaluates to a0 = 0.

For a generic k, where a0 = ... = ak = 0, we have:

(k+1)∑
j=0

c(k+1)jaj =
k∑

j=0

c(k+1)jaj + c(k+1)(k+1)ak+1

= 0 + c(k+1)(k+1)ak+1 = 0

⇒ ak+1 = 0

∴ By induction, a0 = ... = am = 0

2C-14 Suppose V is a ten-dimensional vector space and V1, V2, V3 are subspaces of V with dimV1 =

dimV2 = dimV3 = 7. Prove that V1 ∩ V2 ∩ V3 ̸= {0}.
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Solution Since Vi + Vj is a subspace of V (1,40), we have:

dim(Vi + Vj) ≤ dimV = 10 (2.37)

dimVi + dimVj − dim(Vi ∩ Vj) ≤ 10 (2.43)

14− dim(Vi ∩ Vj) ≤ 10 (given)

4 ≤ dim(Vi ∩ Vj) (∆)

We wish to show dim (V1 ∩ V2 ∩ V3) > 0. Consider the following sum V1 ∩ V2 + V3, which is a

subspace of V3:

dim(V1 ∩ V2 + V3) ≤ dimV = 10 (2.37)

dim(V1 ∩ V2) + dimV3 − dim(V1 ∩ V2 ∩ V3) ≤ 10 (2.43)

4 + 7− dim(V1 ∩ V2 ∩ V3) ≤ 10 (∆)

1 ≤ dim(V1 ∩ V2 ∩ V3)

Thus, dim(V1 ∩ V2 ∩ V3) ≥ 1 > 0.

2C-20 Prove that if V1, V2, and V3 are subspaces of a finite-dimensional vector space, then:

dim

(
3∑

i=1

Vi

)
=

3∑
i=1

dimVi −
1

3

∑
i,j∈1,2,3

i<j

dim(Vi ∩ Vj)−
1

3

∑
i,j,k∈{1,2,3}

i ̸=j ̸=k

dim ((Vi ∩ Vj) ∩ Vk)

Solution Consider the following subspace sum:

dim ((V1 + V2) + V3) = dim(V1 + V2) + dimV3 − dim ((V1 + V2) ∩ V3)

=
3∑

i=1

dimVi − dim(V1 ∩ V2)− dim ((V1 + V2) ∩ V3)

Varying the order of summing in the left-hand side, we obtain two slightly different right-hand sides.

Adding these together and dividing throughout by 3 gives us the desired expression.
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